Skip to main content

Posts

Welcome

 Hi, Welcome to my little math blog. This is where I will dump thoughts on recreational mathematics, fun puzzles, and other stuff every so often. Thanks for stopping by! Hopefully you find something to enjoy here.
Recent posts

On infinite decimal expansions, missing numbers, and generating functions

(This post is a cleaned up and expanded version of this thread .) A cool fact I've seen shared around the internet   a few times : The decimal expansion of 1/998001 starts with 1998001=0.000001002003996997999 That is, it begins with three-digit strings from 000 to 999, in order, except that it skips 998 for some reason. The first thing to observe is that 998001=9992. Recall the formula for the infinite geometric series: n=0rn=11r. If we differentiate both sides with respect to r, we get n=1nrn1=1(1r)2, and multiplying by r gives n=1nrn=r(1r)2. (This can also be obtained by some series manipulations.) Now, take r=0.001. We have 0.001(10.001)2=1000998001=0.001+0.000002+0.000000003+ From here, the appearance of the numbers from 001 to \( 997...

100 is the only square that is the sum of 4 consecutive (positive) cubes.

The OEIS article on the number 100  opens with an interesting factoid:  "100 is the square of 10, and the smallest square that is the sum of four [positive] consecutive cubes: 13+23+33+43=100." In fact, it is the only one. To see this, let's look at the equation y2=x3+(x+1)3+(x+2)3+(x+3)3=4x3+18x2+42x+36. Let X=4x+6,Y=4y; the above equation then reduces to Y2=X3+60X. Note that a positive integer solution in (x,y) will give a positive integer solution in (X,Y), though the converse is not true. Now, generally speaking, whenever one sees an equation of the form Y2=X3+aX+b, one has an elliptic curve . Well, we have the extra condition 4a3+27b20 to get rid of problematic cases like y2=x3, which are referred to as singular curves ; we'll see the logic of this later on. I will not go too...

A silly little derivation of ζ(2)

(This is a cleaned-up and somewhat expanded version of this Twitter thread .) What follows is a silly little proof that ζ(2)=n=11n2=π26 where ζ is the Riemann zeta function. Consider the integral I:=01log(1x+x2)x(x1)dx. We have, by using partial fractions and performing some other algebraic manipulations, I=01log(1x+x2)xdx01log(1x+x2)1xdx=201log(1x+x2)x(x1x)=2(01log(1+x)xdx01log(1+x3)xdx)=4301log(1+x)xdx(xx1/3). To evaluate this integral, we take the Maclaurin series: 01log(1+x)xdx=01n=1(1)nxn1ndx ...

On My Favorite Number, 76923 (A Brief Survey of Cyclic Numbers)

(This is a cleaned-up, somewhat revised/expanded version of my Twitter thread here .) Among math enthusiasts, the number 142857 is pretty cool. Move its leftmost digit to the right, and you get 428571, which is three times the original: 428571=142857×3. Do this again, and you get 285714, which is two times the original: 285714=142857×2. We can keep doing this until we return to 142857, as follows: 142857=142857×1142857×1=142857428571=142857×3142857×2=285714285714=142857×2142857×3=428571857142=142857×6142857×4=571428571428=142857×4142857×5=714285714285=142857×5142857×6=857142 Numbers that give you consecutive...